One hundred years since Albert Einstein’s annus mirabilis: Four Part Series
by Peter Symonds
World Socialist Web Site
June 30 marked 100 years since Albert Einstein’s scientific paper “On the Electrodynamics of Moving Bodies” was received by the prestigious German scientific journal Annalen der Physik for publication. Its unassuming title disguised a revolution in scientific thought. Better known as the special theory of relativity, the paper revised the fundamental conceptions of space and time that had been at the foundation of physics for more than 200 years. Further extended and elaborated in 1915 to the general theory of relativity, it remains one of the two central pillars of modern physics.
While relativity theory is the contribution for which he is best known, Einstein produced four other scientific papers in 1905. All of them showed the spark of genius and have been widely influential. Indeed, the consequences of his first paper in March, which broke with the orthodox view of light as a wave, were no less significant than his relativity theory. Einstein’s postulate that light could behave as lumps of energy, or quanta, formed a key element of what, by the mid-1920s, developed into quantum mechanics—the second pillar of physics.
Remarkably, these ground-breaking papers, produced in the space of six months, came from an unknown 26-year-old physicist employed as a technical assistant by the Swiss patent office in Bern. Apart from his own close circle of young friends and colleagues, he was working in relative isolation without the guidance of, or close collaboration with, any of the leading physicists of the day. Looking back on this astonishing output, scientists and historians of science marvel at what is commonly referred to as Einstein’s annus mirabilis—his miraculous year.
The scientific upheaval ushered in by Einstein has not only altered our comprehension of nature, from the internal workings of the atom to the character of the universe itself, but also opened the door to an array of technologies. No sphere of chemistry or physics has been left untouched by quantum mechanics, which is essential to our understanding of electronics and integral to the design of microchips that are behind the staggering developments in computers and communications. Quantum mechanics is also fundamental to molecular chemistry, and thus to our knowledge of DNA and genetics, and to the expanding field of biotechnology.
Special relativity predicted that mass could be converted to energy, and vice versa, and thus provided the key to understanding nuclear energy. In doing so, it unlocked the secret to what powered the Sun and other stars, as well as to their formation and development. General relativity has fundamentally changed our view of the universe. The theory predicted that the universe could be expanding, over a decade before this was corroborated by observational data, and laid the groundwork for our understanding that the cosmos evolved from an initial “Big Bang”.
The foundations of modern physics were established by an entire generation of physicists, including Neils Bohr, Erwin Schrödinger, Werner Heisenberg, Max Born, Paul Dirac and Satyendranath Bose—to name just a few of the most prominent and brilliant. Many of them drew inspiration, directly and indirectly, from Einstein’s work of 1905. A century later, physicists are still preoccupied with resolving the far-reaching theoretical consequences of the advances of that year.
While an individual of genius, Einstein cannot be understood apart from his times. A century of rapid industrial expansion throughout Europe and the world had profoundly altered the character of science. Capitalism drove technical innovation which, in turn, provoked new scientific questions and provided new apparatus for their resolution. Science became an established profession rather than the pursuit of gentlemen of independent means, as it was in the eighteenth century. According to one estimate, the total number of scientists in the world expanded from a mere 1,000 in 1800 to 100,000 in 1900.
Rest of Part One
Part Two
Part Three
Part Four
No comments:
Post a Comment